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Abstract. The LevitronTM is an axisymmetric top magnetized parallel to its
symmetry axis. It can levitate above a specially constructed magnetic base if spun
rapidly enough (and, as we found, not too rapidly). We have written a complete,
coupled, nondissipative Hamiltonian system that describes the dynamics of the top.
The system is twelfth order and is too complicated for general analysis. We have
integrated the equations of motion numerically and found a region of a
two-dimensional manifold of initial conditions for which levitation persists. We find
that the amplitude of the dynamic variables in the region of persistent levitation
scales linearly with the initial tilt of the axis with respect to gravity. We have
identified three distinct modes of failure that correspond roughly to insufficient initial
spin, too large an initial tilt and too great an initial spin. Our results are in general
agreement with published observations and theoretical estimates.

1. Introduction

There have been several papers in the literature recently
dealing with the levitating magnetic toy called the
LevitronTM (Berry 1996, Joneset al 1997, Simonet al
1997). The device is a magnetized axisymmetric top that
will levitate above a magnetic base if it is spun sufficiently
rapidly and carefully. The published work approaches
the system with plausible physical approximations about
the nature of disturbances to a probably (in the absence
of rotation) unstable equilibrium position. The purpose
of this paper is to work from first principles, analysing
the dynamics withoutad hoc assumptions. We take a
Hamiltonian approach, defining generalized coordinates and
their conjugate momenta, and formulating what turns out
to be a twelfth-order system. There is one conserved
quantity besides the total energy. We find, in common
with others, that simple spin about a vertical axis is
not sufficient to stabilize the top. We find criteria for
the existence of steadily precessing solutions, but these
are sufficiently complicated that analytic results regarding
stability elude us. We construct a simulation, solving the
differential equations numerically, and find that the steady
precessing solution is not realized. We do find persistent
levitation accompanied by precession and nutation over part
of parameter space. We find upper and lower bounds on
the permissible rotation rate (actually, the component of
total angular momentum parallel to gravity) and the initial
nutation angle that allow persistent levitation. We find that
the dynamical variables in the region of persistent levitation
scale linearly with the initial nutation angle. We identify
three distinct modes of failure and approximately where, in

parameter space, each occurs. These points are discussed
in turn below.

2. Formulation

The kinetic energy of a spinning top is given by the standard
formula (see Goldstein (1980) or Meirovitch (1970))

T = 1
2[m(ẋ2+ẏ2+ẋ2)+A(θ̇2+ψ̇2 sin2 θ)+C(φ̇+ψ̇ cosθ)2]

(1)
whereA andC denote the transverse and polar moments
of inertia,m the mass of the top,x, y andz the Cartesian
coordinates of the centre of mass of the top with respect
to a coordinate system fixed in space (gravity pointing in
the negativez direction), and the three anglesθ , ψ and
φ denote the tilt, precession and spin angles respectively
(the latter two symbols interchanged from those used by
Goldstein). The overdot is used to indicate the derivative
with respect to time. The potential energy has two parts,
the usual gravitational energy depending on the vertical
coordinate of the centre of mass of the top, and a magnetic
term obtained by integrating the magnetic moment of the
top over the field. We assume the top to be sufficiently
small that the integral is unnecessary. The result is

V = mgz−M
[

sinθ

(
cosψ

∂9

∂x
+ sinψ

∂9

∂y

)
+ cosθ

∂9

∂z

]
(2)

whereg denotes the acceleration of gravity,M the magnetic
moment of the top, supposed to be aligned with the
symmetry (spin) axis and9 the magnetostatic potential of
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the magnetic base. The behaviour of the system seems to
be insensitive to the details of the base potential. The base
is a plane magnetized perpendicular to its surface with a
centred hole or demagnetized volume, and we choose to
approximate it by a ring dipole, the potential for which we
expand near the axis as

9 = Me

4πR2
{f0(Z)+ (X2+ Y 2)f2(Z)+O[(X2+ Y 2)2]}

= Me

4πR2
8 (3)

whereMe denotes the net strength of the ring dipole,R is
its effective radius and

f0 = Z

(1+ Z2)3/2
f2 = −3

4

(2Z2− 3)Z

(1+ Z2)7/2
.

(We have looked at Berry’s plate with a hole model, and at
a square ring dipole and there is no qualitative difference
near the axis.) We have introduced the first part of a
nondimensionalization, scaling lengths byR, i.e.

x = RX y = RY z = RZ (4)

and introducing a dimensionless magnetostatic potential8.
We have examined the potential expansion out throughr6

and find that there is no significant difference (less than
0.05%) in either the vertical or radial field forr < 0.1,
which is larger than one expects for persistent levitation.
We retain ther2 term to provide a radial field and use
the two-term truncation for the rest of this paper. Any
truncation error will be swamped by other approximations.

We finish the nondimensionalization by measuring mass
in units ofm and energy in units ofmgR. The consistent
time scale is

√
(R/g), the time it would take the top to

fall a distanceR/2. (For our model of the LevitronTM

R = 34.7 mm and the time scale is 59.5 ms.) The
dimensionless Lagrangian may then be written

L = 1
2[Ẋ2+ Ẏ 2+ Ż2+ a(θ̇2+ ψ̇2 sin2 θ)

+c(φ̇ + ψ̇ cosθ)2]

+M
[

sinθ

(
cosψ

∂8

∂X
+ sinψ

∂8

∂Y

)
+cosθ

∂8

∂Z

]
−Z

(5)

where

a = A

mR2
c = C

mR2
M = MMe

4πmgR4
(6)

are dimensionless numbers characterizing the system. The
first two are inertial parameters and the third the ratio of
magnetic to gravitational energy.

It is convenient to formulate Hamilton’s equations of
motion to take advantage of the one cyclic coordinate (φ).
To that end we choose the generalized coordinatesqi given
by the components of the vectorq

q = (X, Y, Z, θ, ψ, φ)T (7)

where the superscript T is used to denote the transpose. The
conjugate momenta,pi , are defined by differentiating the
Lagrangian with respect to the corresponding generalized

coordinate, and the result, in terms of the components of a
vectorp is

p = [Ẋ, Ẏ , Ż, aθ̇ , ψ̇(a sin2 θ + c cos2 θ)

+cφ̇ cosθ, c(φ̇ + ψ̇ cosθ)]T. (8)

We substitute for the physical variables and eliminate the
derivatives of the generalized coordinates in terms of the
conjugate momenta

q̇ =
(
p1, p2, p3,

p4

a
,
p5− p6 cosq4

a sin2 q4
,

p6[cos2 q4+ (a/c) sin2 q4] − p5 cosq4

a sin2 q4

)T

. (9)

We can then write the HamiltonianH = qTp−L, which is
also the total energy and is conserved, and write Hamilton’s
equations of motion as

q̇ = ∂H
∂p

ṗ = −∂H
∂q

(10)

whereH is given by

H= 1

2

(
p2

1 + p2
2 + p2

3 +
p2

4

a
+ [p5− p6 cos(q4)]2

a sin2 q4
+ p

2
6

c

)
−M

[
sinq4

(
cosq5

∂8

∂q1
+ sinq5

∂8

∂q2

)
+ cosq4

∂8

∂q3

]
+q3. (11)

Equation (9) gives the explicit evolution forq; the evolution
equations forp are quite complicated in general. There
seems little point in writing them out in their full generality.
Note, however, thatp6 is constant.

The trivial solution

q = (0, 0, h,0, �t, ωt)T p = (0, 0, 0, 0, �, ω)T

(12)
satisfies the equations for any values ofω and� if

M >

√
30

2880

(10+√30)7/2

(6+√30)1/2
= 8.1880

andh takes one of two specific real values, solutions to

3Mh(2h2− 3)

(1+ h2)7/2
= 1. (13)

This solution is unstable to vertical motions ifh is
equal to the smaller solution and unstable to horizontal
motions if h is equal to the larger solution. The two
solutions coincide at the minimum value ofM, where
h = 1.693 848 849. . . . This simple instability determined
by vertical position agrees with the previous work cited.
(The actual numbers depend on the specific choice of base
magnetostatic potential function and so will vary with the
choice of the base plate model.)

3. Steady precession

The simple solution of erect (parallel to gravity) spin at the
heighth is unstable. The next simplest solution is that of
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steady precession, for which the components of the vectors
q andp may be written explicitly as

q = (r cos�t, r sin�t, h, α,�t, ωt)T

p = [−r� sin�t, r� cos�t, 0, 0, �(a sin2 α + c cos2 α)

+cω cosα, c(ω +� cosα)]T (14)

where one is at liberty to chooseω and ther, α, h and
� must be found to assure that (14) indeed satisfies the
equations of motion. Observations of the device suggest
that r andα will be small.

The evolution equations forq are automatically
satisfied for the choice (14), as is the fifthp evolution
equation. The first two evolution equations forp are
satisfied if

r = 3
Mh sinα(1+ h2)(h2− 3)

(12h4− 63h2+ 9)M cosα + 2(1+ h2)9/2�2
(15)

which is guaranteed to be positive if(
21−√393

8

)1/2

= 0.3834< h <
√

3 (16)

and �2 does not exceed−M cosα(12h4 − 63h2 + 9)/2
(1+h2)9/2. (In this range the numerator of (15) is negative,
as is the first factor in the denominator.) As vertical
equilibrium is not affected by the addition of precession,
we find thath must lie in a very narrow range

1.693 848 849. . . < h <
√

3= 1.732 050 808. . . (17)

with the lower limit defined by vertical stability and the
upper by equation (16). This is consistent with the
observation that the actual top shows persistent levitation in
a narrow range of elevation. The thirdp evolution equation
can be satisfied by a correction ofO(α2) to the equilibrium
h found in the previous section. The full formula is quite
lengthy. We will discuss the essentials later. In any case
we cannot haveh outside the range defined by (17). Given
that the change inh is small, the static equilibrium position
also limitsM

8.187 957 439. . . <M < 8.211 203 828. . . (18)

At h = 1.72 andM = 8.20 the upper bound on�2 is
0.779 296 7. . ..

The fourthp evolution equation, proportional to sinα,
determines a relation between� and ω. The leading
term in an expansion in powers ofα is an eighth-degree
polynomial in� divided by a sixth-degree polynomial in
�. However, if one assumes that relation (13) between
M andh is satisfied, which is consistent with the smallα
approximation, the expression simplifies to a fourth-degree
polynomial divided by a second-degree polynomial. The
denominator vanishes at a precession rate independent of
the spin

�2 = �2
cr = −

4h4− 21h2+ 3

4h5− 2h3− 6h
(19)

which lies between 0.56 and 0.66 in the range of interest.
The numerator can be written out as

12h2(a − c)f1(h)�
4− 12ωch2f1(h)�

3+ h[6(a − c)f2(h)

Figure 1. Equilibrium precession rate as a function of total
spin in the persistent levitation range.

+4f3(h)]�
2− 6ωchf2(h)�+ f4(h) = 0 (20)

where
f1 = 4h6− 8h4− 3h2+ 9

f2 = 8h6− 54h4+ 69h2− 9

f3 = 4h8− 9h4− 2h2+ 3

f4 = 13h8− 16h6− 47h4+ 2h2− 6. (21)

The general solution to this is unwieldy, but if we introduce
the numerical values ofa (=0.089) and c (=0.139),
equation (20) reduces to a manageable package for
symbolic manipulation by Maple (version 5.0.1 Waterloo
Maple Software), although the exact solutions for�
obtained by introducing the rational versions ofa and c
are much too lengthy to be reproduced here. On the other
hand, viewed as an equation determiningω as a function of
�, the result is simple. We have a second relation between
the two spin rates: thatp6 is conserved. Thus, for small
α, we haveω + � ≈ p6/c, wherep6 is a constant of the
motion related to the original angular momentum of the top.
This will be seen to be the key parameter for the simulation
work.

None of the coefficients are particularly sensitive toh
within its limited permissible range, so we seth = 1.72.
We then equate the two expressions forω and solve the
resulting equation for� as a function ofp6. There are four
solutions, of which two are complex for moderate values of
p6/c. The other two are real for 0< p6/c < 4.8812. . . and
complex otherwise. The real values are very insensitive to
p6/c in the range where they exist and may be taken equal
to ±0.77927, their value atp6/c = 1. The spin rate is
bounded byp6/c + 0.77927 assuming a positive spin rate
and a negative precession rate. The lower bound is then
0.77927 and the upper bound 5.6605. These correspond
to spin rates between 125 and 908 rpm, which are lower
than the experimentally observed limits, which suggests that
the steady precession solutions are unstable and that the
experimentally observed state of persistent levitation must
have a nutational component. Unfortunately an analytic
stability analysis is beyond the scope of this work. It
remains to look at the system in simulation, by integrating
the equations of motion, and the next section is devoted to
that effort.
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Figure 2. Location of persistent levitation as a function of total spin and initial tilt angle. Failure modes noted on the figure
will be discussed below.

Figure 3. Frequency of radial oscillation as a function of total spin in the persistent levitation regime. Results are superposed
for initial tilt angles of 0.015, 0.030, 0.045 and 0.060 radians.

4. Simulations

We have programmed the unrestricted set of equations (10)
using the variable step Runge–Kutta routines given by Press
et al (1992). We integrate adaptively over each of a
series of equally long subintervals allowing us to collect
data equally spaced in time for later Fourier analysis. We
have done considerable numerical experimentation to try to
understand the idiosyncrasies of the code. The self-adaptive
part of the code makes use of an error measure, comparing
the result of two half-interval integrations to a full-interval
integration. There is a convergence criterion. We have
tested various values of this criterion and find that 10−3 is
not fine enough, that 10−4 is adequate for elapsed times
of less than 1000 units (approximately one minute—see
below), and that 10−5 is good enough for times exceeding
5000 (approximately five minutes). Most of what we report

below is based on convergence criteria of either 10−4 or
10−5. We will distinguish where it is important.

We fixed the physical parametersa = 0.089, c =
0.139,M = 8.20 and searched for a restricted range of
initial conditions. For these values one time unit is about
59.5 ms; there are about 1000 time units per minute. The
code runs three to six times more slowly than real time
on a Power Mac 7100/66 at a convergence criterion of
10−4, significantly slower at 10−5. We use the truncated
magnetostatic potential of equation (3). We set the initial
values of the position of the centre of mass of the system
to (0, 0, 1.72), choose the initial phase ofψ and φ to be
zero and let the velocity of the centre of mass and the tilt
angular velocity all be zero. These determine the following
initial values for the canonical variables:

q1 = 0= q2 q3 = 1.72 q5 = 0= q6
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Figure 4. Maximum radial excursion as a function of total spin in the persistent levitation regime. Results are superposed for
initial tilt angles of 0.015, 0.030, 0.045 and 0.060 radians.

p1 = 0= p2 p3 = 0= p4. (22)

Even within these constraints, there remains a three-
dimensional parameter space, and we have uncovered a
wide variety of behaviours—more than we can explore
thoroughly in this paper. Our objectives are to say
something about stability criteria, and to examine the
dynamics of persistent levitation and of the transition from
levitation to falling. This is an essentially experimental
task, and the word stability is used more in a colloquial
sense than a technical one. We call the levitating state
persistent levitation rather than stable levitation for this
reason.

To understand persistent levitation, we need to find
conditions under which the device will levitate indefinitely,
and conditions under which it will drop out quickly. These
are ill-defined words, and we will sharpen our meaning
shortly. Apparently we are exploring a three-parameter
space of initial conditions, seeking a domain of persistent
levitation. The conserved quantityp6 must be important. It
represents the total vertical angular momentum imparted to
the top, and is approximately proportional to the square
root of its initial kinetic energy. Observations suggest
that the tilt angle,q4 = θ , is small. The equations are
singular for zero tilt angle, and the analysis presented above
suggests instability in that case, so small initial tilts seem
called for. The partition of the rotation associated withp6

between spin and precession is not obvious for small tilt
angles. We ran a number of cases that exhibited persistent
levitation, and discovered that the device seeks a specific
mean precession rate for each value ofp6. The precession
rate jumps from an initial small value (here 0.001) to a
value near its long-term average within one time unit for
all allowableωT . We define a total spinωT = p6/c and plot
the mean precession rate as a function ofωT in the range of
ωT where persistent levitation is possible in figure 1. The
final mean precession rate is a weak function of the initial
tilt angle θ0, increasing with the tilt angle. AtωT = 7.5
the mean precession (measured by looking at the precession
angle after 100 time units) increases from 1.1991 to 1.2278
as θ0 increases from 0.005 to 0.085. For our simulations

we selectωT and θ0 and choose the initial value of the
precession� to be approximately equal to its long-term
mean. This reduces, but does not eliminateq5 and q6

oscillations: angular momentum is continually exchanged
between spin and precession. Thus we are exploring a two-
dimensional subspace of the twelve-dimensionalq, p space,
parameterized byωT andθ0.

Observations of the LevitronTM suggest that the top
apparently fails by slowing down and then falling out of
equilibrium. On the other hand, the simulation has no
mechanism for slowing; when failure occurs, it does so
after some interval of time consistent with experimental
observations. The time to failure in simulation increases
as the initial tilt angle decreases, but not uniformly.
One cannot compute for ever, and we need to choose a
value beyond which we will call the levitation persistent.
We have chosen 1024 time units (about a minute) as a
compromise between observations (Simonet al (1997)
state that levitation can last for more than two minutes;
Joneset al (1997) state that levitation can last as long as
five minutes) and computation time. We have run some
examples for longer periods (up to 10 000 time units, in
excess of ten minutes). Figure 2 shows a map of stability
according to this criterion. Most of the calculations on
which the figure is based were done using 10−4 as our
convergence criterion. We have checked much of the field
at 10−5 and obtained consistent results. The range of stable
total spin is defined by the lower unstable observation at
ωT = 4.83 and an initial tilt of 0.001 radians, and the
upper unstable observation ofωT = 9.18 at the same
initial tilt (stable at 4.84 and 9.17 atθ0 = 0.001 radians).
These are well defined: the top becomes rapidly unstable
immediately outside the region of persistent levitation at
these boundaries.

The motion within the stable region is complicated.
There is a vertical oscillation, a radial oscillation, a nutation
and an interchange of vertical angular momentum between
spin and precession. We have examined these frequencies
as a function ofωT at initial tilts of 0.015, 0.030, 0.045
and 0.060 radians by creating records of 1024 time units
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Figure 5. Nutation frequencies as a function of total spin in the persistent levitation regime. Results are superposed for initial
tilt angles of 0.015, 0.030, 0.045 and 0.060 radians.

Figure 6. Normalized nutation angle as a function of total spin in the persistent levitation regime. Results are superposed for
initial angles of 0.015, 0.030, 0.045 and 0.060 radians.

and 2048 points using 10−5 as our convergence criterion,
and taking the Fourier transforms of the variables using the
Presset al (1992) fast Fourier transform (FFT) routines.
The power spectra show one to five distinct peaks. We find
no signs of chaos in any of the nominal stable systems.

The vertical (Z) oscillation has one dominant
frequency. There is also some power at the lowest nutation
frequency. The dominant frequency is a weak function of
ωT and of θ0, increasing with the former and decreasing
with the latter. Its value ranges from 25.4 to 28.3 mcptu
(millicycles per time unit, a convenient nondimensional
unit approximately equal to rev/min). One can calculate
a nominal vertical oscillation frequency from the linearized
perturbation of thep3 evolution equation. This is formally
independent of spin and precession, depending linearly
on M and cosθ0, and nonlinearly on the equilibrium
position. The measured frequencies correspond to linear
oscillation about an equilibrium position of about 1.701.
(The frequency corresponding to the initial value of 1.72 is

50.8 mcptu.) In this range of initial tilt the vertical position
remains within one per cent of its initial value.

The X and Y spectra are identical, corresponding to
a radial oscillation. (We have specifically examined the
behaviour of radius as a function of time, although we
do not present the result here.) There are typically three
dominant frequencies. One of these is identical to the
vertical oscillation frequency. The other two are shown
as functions ofωT in figure 3. We find a high frequency
that decreases with spin rate and a lower frequency (not an
integer multiple of theZ frequency) that increases slowly
with spin. Neither frequency depends on the initial tilt
angle θ0. The amplitude of oscillation is proportional to
the initial tilt angle, and increases with increasing spin.
Figure 4 shows the maximum radial excursion divided by
the initial tilt angle for these stable cases. The data from
the four different initial tilt angles fall on the same curve.
We take some comfort in the fact that the radial excursions
are typically no more than 0.1 (less than 3.5 mm), so that
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(a)

(b)

(c)

Figure 7. First failure mode: ωT = 4.8, θ0 = 0.0001 radians,
�0 = 3.49, resolution = 10−5, 0 < t < 16.87. (a) δZ versus
t, (b) θ versus t, (c) y versus x phase trajectory.

neglect of the higher order terms in the potential function
is not likely to affect our results.

Figure 5 shows the dominant nutation frequencies.
They are identical for all four different initial tilt angles
where they have a common range. The nutation frequencies
also appear in the spectrum forp5, showing that they are
coupled to the interchange of angular momentum between
spin and precession. The maximum and minimum nutation
angles, divided by the initial tilt angle, are shown in
figure 6. The range of nutation clearly scales with the initial
value. Again all four normalized curves are essentially the
same.

It is interesting to compare Berry’s (1996) qualitative
predictions (his section 6) to the results of the simulation.
They are remarkably good. We expect different models of
the base magnetic field potential to make little qualitative
difference. Berry discusses the case that the top is set
spinning with an initial spin of 20 Hz. This translates
to 7.48 rptu (radians per time unit) in our dimensionless
representation. The simulation gives a mean precession
rate of 0.94 rptu, which translates to 2.51 Hz, rather close
to his adiabatic estimate of 3.8 Hz. The total spin is 8.432,

(a)

(b)

(c)

Figure 8. Second failure mode (low range): ωT = 7.0,
θ0 = 0.07 radians, �0 = 1.44, resolution = 10−5,
0 < t < 8.24. (a) δZ versus t, (b) y versus x phase
trajectory, (c) θ̇ versus θ phase trajectory.

well within the range of stability. We ran an extensive
calculation (an elapsed time of 8192 time units, just over
eight minutes, recording 4096 fixed data points) of this
case at an initial tilt of 0.03 radians using 10−5 as our
convergence criterion. There are three radial frequencies
containing significant power: 0.778, 1.269 and 0.419 Hz.
The maximum radial excursion is a little more than 2 mm.
There are two vertical frequencies containing significant
power: 1.130 and 0.43 Hz. The first compares well with
Berry’s estimate of 1.4 Hz. The peak to peak vertical
excursion is 130µm, and the mean position is 3µm
below the initial position. There are two dominant nutation
frequencies. By far the more important is 0.443 Hz,
which also appears in the vertical spectrum. The second is
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(a)

(b)

(c)

(d)

(e)

Figure 9. Second failure mode (high range): ωT = 8.0,
θ0 = 0.10 radians, �0 = 1.04, resolution = 10−5,
0 < t < 20.62. (a) δZ versus t, (b) y versus x phase
trajectory, (c) θ̇ versus θ phase trajectory, (d) � versus t,
(e) ω versus t.

(a)

(b)

(c)

(d)

(e)

Figure 10. Third failure mode: ωT = 9.2, θ0 = 0.025
radians, �0 = 0.72, resolution = 10−5, 0 < t < 45.36.
(a) δZ versus t, (b) y versus x phase trajectory, (c) θ
versus t, (d) � versus t, (e) ω versus t.

0.985 Hz. The nutation angle, initially 0.573◦, is bounded
by 0.410◦ and 2.097◦.

We have examined a number of unstable cases with a
view to describing the failure mode, if not the mechanism.
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We find three fairly distinct modes of failure that can
be located with some precision on the parameter map
(figure 2). All of the failure assessments were performed
using 10−5 as our convergence criterion.

To the left of the zone of persistent levitation (ωT <

4.83) the top becomes unstable ‘explosively’, with an
apparently exponential increase in tilt angle, radial location
of the centre of mass and distance of the centre of mass
below its nominal equilibrium position. Figures 7(a)–(c)
show the change in vertical location and tilt angle as a
function of time, and the location of the centre of mass in
the x–y plane during the same time interval respectively
for ωT = 4.80 at an initial tilt angle of 0.0001 radians. The
calculation was terminated when the vertical position had
dropped from 0.07 to 1.65. This is sufficient to ensure there
will be no recovery. The important point to note about
this failure mode is the simultaneous growth in all three
directions—radial, vertical and nutational. The precession
and spin rates oscillate in the early phase of the run, and
may be increasing near the end, but the real ‘action’ is
in displacement and tilt. We ran many simulations in this
part of the map and find the results to be qualitatively the
same. The small quantitative difference do not appear to
be meaningful, and we will not discuss them.

The second failure mode occurs whenωT lies within
the persistent levitation range to the left of the peak, but
the initial tilt is too high. This failure mode is marked
by vertical motions that lead to a dropping of the top
without significant change in tilt or radial position. The
vertical oscillation is accompanied by nutation and by a
complicated motion in thex–y plane. Both are apparently
bounded. The amplitude of the motion increases slightly
with ωT . Figures 8(a)–(c) show the vertical motion versus
time, thex–y motion during the time interval and a phase
plane diagram of the nutation respectively forωT = 7.00 at
an initial tilt of 0.07 radians. These figures are typical; there
is no indication of any secular motions in tilt or in radial
location. We also observe nothing remarkable in the spin
and precession rates. The same general failure behaviour
persists asωT increases.

A variation of the second failure mode, observed to
the right of the region of persistent levitation is illustrated
in figures 9(a)–(e). Figure 9(a) shows the vertical motion,
which exhibits a significant rise above equilibrium before
the start of the fall. Figures 9(b) and 9(c) show thex–
y plane and the tilt phase plane trajectories respectively,
and there is nothing remarkable to be noted in either.
Figures 9(d) and 9(e), however, show a glitch in the
precession and spin rates at aboutt = 11. This behaviour
was not noted in any of the simulations discussed so far.

Failure in the third mode, occurring forωT >

8.4, is characterized by a leap upward of the centre
of mass, accompanied by sharply increasing tilt and
radial motion, followed by the usual precipitous drop

of the centre of mass. Figures 10(a)–(e) show this
behaviour. Figure 10(a) shows the sharp rise in elevation
just before the fall. Figure 10(b) shows the rapid lateral
excursion of the centre of mass. Figure 10(c) shows the
accompanying increase in tilt angle. Finally, figures 10(d)
and 10(e) show the same glitch in spin and precession
as appears in figures 9(d) and 9(e). Note that this glitch
accompanies an approach to zero of the nutation angle. It
is not impossible that this approach to a singular condition
is connected with the subsequent failure of levitation.

5. Discussion and conclusions

We have shown that the full, nondissipative equations
of motion can be used to describe the behaviour of
the LevitronTM without any need to make simplifying
assumptions. These equations are extremely complicated,
even with some simplification of the magnetostatic potential
of the base, and do not provide extensive analytical results.
Apparently there are no simple solutions that lead to
persistent levitation, so that various analytic approaches
to stability, such as linearization or nonlinear averaging
techniques, already challenged by the sheer dimensionality
of the problem, seem unlikely to yield definitive results,
restricting the analyst to numerical experimentation.

Simulation is successful, yielding behaviour that
is consistent with what experimental observations are
available. As such it presents a tool for studying this
system, and other systems of high dimensionality and
complicated motion. It does not seem important or useful
at this point to make the simulation more complicated. The
simulation predicts that one can have a short period of
apparently persistent levitation followed by rapid failure
without the need to introduce any mechanism for slowing
the top, or, indeed, any dissipative mechanism at all. We
hope that these results can be used as a guide by analysts
and experimenters dealing with this and other rotationally
constrained problems.
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